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Formalized relationships are developed for the estimation of maximum dynamic
stress and strain in randomly vibrating structures from simple vibrational velocity
measurements obtained using accelerometers. These relationships are based on
far"eld relationships, factors for the e!ects of evanescent waves, and the correlation
of dynamic stress and velocity spatial maxima in narrow frequency bands. The
relationships developed also serve to extend earlier work in this area by providing
a consistent theoretical and experimental approach for both narrow band and
broad-band resonant vibration, and both resonant and non-resonant vibration.
The relationships developed can be applied to the estimation of maximum dynamic
stress in the low-, mid- and high-frequency ranges. Theoretical and experimental
data are presented demonstrating the basis of these relationships and their
application to the measurement of dynamic strain.

( 1999 Academic Press
1. INTRODUCTION AND LITERATURE REVIEW

Practical procedures using vibrational velocity measurements for the estimation of
maximum dynamic stress levels in randomly vibrating structures and piping
systems, which are subject to high levels of acoustic, #ow-induced or mechanical
excitation, are of interest to assess fatigue life and identify potential fatigue failures
before they occur. Limitations with the use of strain gauges to measure maximum
dynamic stress levels are that (i) the location of maximum dynamic stress for
installation of strain gauges is generally not known a priori; and (ii) at higher
frequencies and short wavelengths, the magnitude of dynamic stress decreases
rapidly with distance from boundaries and discontinuities where dynamic stress
is usually largest, making the measurement of maximum dynamic stress using
"nite length strain gauges very di$cult. Bene"ts of using vibrational velocity
measurements for the estimation of maximum dynamic stress are that the
measurements are easily performed, the transducers are portable and robust, it is
not necessary to know the location of maximum dynamic stress, and the
positioning of transducers is not critical to the accuracy of dynamic stress
predictions.
0022-460X/99/390645#30 $30.00/0 ( 1999 Academic Press
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Relationships between dynamic stress and velocity were "rst derived by Hunt [1]
and Ungar [2]. One of the main outcomes of their work was that the ratio of
dynamic stress to velocity is frequency independent in simple beams and plates
vibrating at resonance. Their work included the correlation of dynamic stress and
velocity spatial maxima in structures vibrating at resonance, and was subsequently
applied by Wachel [3] to the estimation of maximum dynamic stress in piping
systems vibrating at their "rst resonant mode using simple measurements of
maximum overall velocity.

The relationships derived by Hunt [1] and Ungar [2] have been extended to the
broad-band multi-modal resonant vibration of plates and large diameter
cylindrical shells by Stern [4]. The relationships derived by Stearn are based on the
correlation of spatial averages of dynamic stress and velocity, and require factors to
relate spatial maximum levels of dynamic stress to spatially averaged levels of
dynamic stress. The relationships also assume a di!use wave "eld which requires
that at least 10 modes are excited in the frequency band of interest for the
relationships to be valid. The relationships derived by Stearn were developed for
Statistical Energy Analysis applications and are adopted for the prediction of
dynamic stress in Statistical Energy Analysis applications by Lyon [5].

Experimental investigations of correlations between dynamic stress and velocity
are limited to those by Stearn [4] for broad-band vibration of plates and large
diameter cylindrical shells, and Norton and Fahy [6] for broad-band vibration of
#uid-"lled cylindrical shells. Both of these investigations correlate the spatial
averages of dynamic stress and velocity using di!use wave "eld assumptions. Stearn
[4, 7] also investigated the dynamic stress concentration at a step change in
thickness of a plate as part of theoretical and experimental investigations to relate
spatial maximum levels of dynamic stress with spatially averaged values. Dynamic
stress concentration is an increase in dynamic stress at a boundary or
a discontinuity due to evanescent wave e!ects [8, 9]. Norton and Fahy also
reported dynamic stress concentration e!ects in their experiments.

In the present paper, travelling wave solutions are used to derive far"eld
relationships between the propagating wave components of dynamic stress and
velocity. Formal relationships for the correlation of dynamic stress and velocity
spatial maxima are then de"ned. These latter relationships incorporate explicit
factors for the e!ects of evanescent waves on dynamic stress and velocity, and are
based on analyses of dynamic stress and velocity spatial distributions. Factors for
the e!ects of evanescent waves are subsequently incorporated in a single overall
factor relating the spatial maxima of dynamic stress and velocity. The relationships
derived here are for the #exural vibration of thin beams. Similar relationships have
also been derived for the longitudinal and torsional vibration of thin beams, the
#exural vibration of thin rectangular plates, and the coupled longitudinal, torsional
and #exural vibration of cylindrical shells [9].

The present work serves to extend earlier work in this area by providing
a consistent approach with a "rm theoretical basis for narrow-band and
broad-band vibration, and for resonant and non-resonant vibration. The
relationships derived can be applied in the low-, mid- and high-frequency ranges
and are independent of the type and amplitude of excitation. This is achieved by



DYNAMIC STRESS AND VELOCITY IN BEAMS 647
correlating the spatial maxima of dynamic stress and velocity in each frequency
band to predict the spatial maximum dynamic stress in each frequency band, and
then summing these values to obtain a conservative prediction of maximum overall
dynamic stress. The correlation of dynamic stress and velocity spatial maxima
directly takes into account dynamic stress concentration e!ects.

2. TRAVELLING WAVE EQUATIONS

The travelling wave solution to the governing di!erential equation for #exural
vibration of a beam, neglecting shear strain and rotary inertia, is described by two
propagating waves moving in opposite directions and two evanescent waves
decaying from opposite ends of the beam. In far"eld regions, the evanescent waves
are not signi"cant to the response and the evanescent wave terms can be neglected.
The complete and far"eld forms of the travelling wave solution for velocity at
a given frequency f are

m(x, f )"i2nf (A
1
e~*kx#A

2
e*kx#A

3
e~kx#A

4
ekx) (1)

and

m
FF

(x, f )"i2nf (A
1
e~*kx#A

2
e*kx), (2)

respectively, where m is the complex velocity, x is the position along the beam axis,
k is the wavenumber (which is complex if damping is included), i is J1 and the
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for dynamic bending stress and dynamic bending strain are given by
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for vibration at any location along the beam, where p is complex stress, m is complex
strain, E is the modulus of elasticity and y
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are the same for equations (1)}(4) and

are calculated using the travelling wave modelling procedures described in
Karczub [9].

3. FARFIELD RELATIONSHIPS

The dynamic bending stress for #exural vibration of a beam is related to the
transverse velocity at the same location by a frequency-independent constant if the
evanescent wave components are neglected. Dividing the far"eld dynamic stress in
equation (4) by the far"eld velocity in equation (2) yields
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where K
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the longitudinal wave speed, o is density, A is cross-sectional area, and I is the area
moment of inertia. The relationship in equation (5) states that the complex far"eld
dynamic stress at position x is related to the complex far"eld velocity at the same
position by a phase shift of !i and the frequency independent constant EK

shape
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.

The frequency-independent constant is a function of only cross-sectional geometry,
density and the modulus of elasticity. The relationship in equation (5) is based on
the dynamic response due to propagating waves alone in the absence of evanescent
waves, but is also applicable in far"eld response regions where the contribution of
evanescent waves to the response is negligible.

The non-dimensional geometric shape factor K
shape

in equation (5) is simple to
calculate and lies in a small range for di!erent cross-sections. The value of the
geometric shape factor for both solid rectangular bars and solid circular bars is
independent of cross-sectional dimensions. It is equal to J3 for a solid rectangular
bar and to 2 for a solid circular bar [1]. For a hollow bar or cylinder, the geometric
shape factor is a function of the diameter ratio d

i
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being given by
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diameter. The geometric shape factor for a hollow bar lies in the range of J2 for
a very thin-walled cylinder, to 2 for a solid circular bar.

3.1. FARFIELD RELATIONSHIPS FOR THE PREDICTION OF DYNAMIC STRESS

The relationship in equation (5) "nds use in the two-accelerometer method for
structural intensity measurements and can also be used to determine dynamic stress
or dynamic strain from velocity in far"eld regions. The prediction of dynamic stress
or dynamic strain from velocity may be in the form of either spectral or time history
predictions. Theoretical relationships for the prediction of dynamic stress and
dynamic strain from velocity in far"eld regions are presented in the following
paragraphs.

3.1.1. Frequency}domain predictions

Re-arranging equation (5), the complex dynamic bending stress at any far"eld
position can be predicted directly from the complex velocity at the same position by
scaling the complex velocity by the factor !iEK
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; hence,
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In terms of mean-square values, the dynamic stress is related to velocity by
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Therefore, auto-spectral measurements of velocity in the far"eld can be used to
predict auto-spectra of either dynamic stress or dynamic strain at the same location
as the velocity measurement. Similar narrow-band relationships are given by Hunt
[1] and Ungar [2] based on mode shapes for vibration at a single natural
frequency. By repeating the velocity measurements at a number of locations, these
relationships can be used to determine far"eld spatial distributions of dynamic
stress (or dynamic strain) in each frequency band. The factor EK

shape
/c

L
in equation

(7), which relates dynamic stress to vibrational velocity, is de"ned here as the
far"eld correlation ratio for dynamic stress; similarly, the factor K

shape
/c
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equation (8) is de"ned as the far"eld correlation ratio for dynamic strain.

3.1.2. Overall mean-square predictions

Since the far"eld relationship between dynamic stress and velocity for #exural
vibration of a beam is frequency independent, it can also be used to relate overall
mean-square value of dynamic stress and velocity. Summing the mean-square
response in equation (7) over each frequency f gives
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and similarly for dynamic strain using equation (8).

3.1.3. ¹ime}domains predictions

The relationships in equation (6) are also applicable to time history predictions of
dynamic stress and dynamic strain from velocity. Dynamic stress and dynamic
strain time histories are predicted from a velocity time history by introducing
a phase shift of !i into the velocity time history and scaling the time history by the
far"eld correlation ratio. This may be stated mathematically as
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In practise the phase shift of !i can be implemented digitally using a combination
of Fourier transform methods, frequency-domain processing and convolution.
This procedure may "nd use for cycle counting fatigue predictions at far"eld
locations.

3.2. GENERALIZATION OF FARFIELD RELATIONSHIPS FOR THE PREDICTION
OF MAXIMUM DYNAMIC STRESS

In general, the dynamic stresses and dynamic strains in a beam due to #exural
vibration can be predicted in far"eld regions from velocity using only the far"eld
correlation ratio and a phase shift of !i. For mean-square predictions, the phase
shift of !i can be neglected and only the far"eld correlation ratio is required. Since
the above relationships between dynamic bending stress and velocity in the far"eld
are also independent of structural details such as beam length and boundary
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conditions, it would be useful if the same relationships could also be applied in
near"eld regions. Spatial distributions presented in the next section show that
dynamic stress is not simply related to the velocity at the same location in near"eld
regions, but that the spatial maxima of dynamic stress and velocity at each
frequency may be correlated using the same generic relationship as in equation (7).
This is achieved by incorporating an additional factor in equation (7) for the e!ects
of evanescent waves on the propagating wave component of the dynamic response.
The correlation of dynamic stress and velocity spatial maxima is considered in
section 5.

4. DYNAMIC STRESS AND VELOCITY NARROW-BAND SPATIAL
DISTRIBUTIONS

Narrow-band spatial distributions of dynamic stress and velocity are presented
in the following sub-sections for the #exural vibration of some point-excited beam
systems. These spatial distributions demonstrate near"eld e!ects, dynamic stress
concentration, and correlations between dynamic stress and velocity. The beam
system dimensions are taken from the beams tested experimentally in section 6 [9],
so that the theoretical calculations presented here are comparable with the experi-
mental results. The structural damping coe$cient used in all calculations is 0)04
unless speci"ed otherwise. This is the level of damping estimated for the clamped
beam experimental rig [9].

4.1. CLAMPED BEAM SYSTEM

Spatial distributions of dynamic stress, far"eld dynamic stress and near"eld
dynamic stress are plotted in Figure 2 for the "rst three natural frequencies of the
clamped beam system in Figure 1. The far"eld dynamic stress represents the
propagating wave component of dynamic stress and the near"eld dynamic stress
represents the evanescent wave component of dynamic stress.

The velocity, far"eld velocity and near"eld velocity response components are
also plotted in Figure 2 but in the form of dynamic stress predictions obtained
by scaling the velocity response components by the far"eld correlation ratio.
Since these velocity components are related to their respective dynamic stress
Figure 1. Thin beam clamped at both ends and excited by a unit point force at x"0)185 m.



Figure 2. Calculated spatial distributions of dynamic stress and predicted dynamic stress in
a clamped beam (dB re 1 N/m2) (== stress;** predicted stress from velocity; } } } far"eld stress;
- - - near"eld stress). (a) 1st Natural Frequency (38)5Hz). (b) 2nd Natural Frequency (106 Hz). (c) 3rd
Natural Frequency (208 Hz).
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components by the far"eld correlation ratio, the far"eld velocity is represented by
the far"eld dynamic stress curve and the near"eld velocity is represented by the
near"eld dynamic stress curve.
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4.1.1. Near,eld and far,eld regions

The clamped beam in Figure 1 has boundary conditions that result in #exural
near"elds adjacent to each of the clamped boundaries. The near"elds are identi"ed
by regions in which the response is di!erent to the propagating wave component of
the response due to the presence of signi"cant evanescent waves. At low frequencies
the clamped boundary near"elds span most or all of the beam. This is seen in
Figures 2(a) and 2(b) for vibration at the "rst two natural frequencies. As frequency
is increased and wavelengths decrease, the spatial extent of each near"eld decreases,
and a far"eld region forms at the centre of the beam which has increasing spatial
extent with frequency. The spatial distributions in Figure 2(c), for vibration at the
third natural frequency, are representative of the vibrational response "elds at
higher frequencies where both near"eld and far"eld regions exist.

At non-resonant frequencies there are additional evanescent waves that emanate
from the excitation position. These evanescent waves are due to a force
discontinuity at the position where the exciting force is applied. This is
demonstrated in Figure 3 for vibration at a non-resonant frequency between the
second and third natural frequencies. The evanescent waves that emanate from the
force discontinuity are not observed for vibration at the various natural frequencies
considered in Figure 2 since the impedance associated with a point force applied to
a lightly damped beam is small or negligible at resonance; and in an undamped
structure vibrating at resonance there are no evanescent waves generated by a force
discontinuity such as this. It should be noted that a normal modes summation
model for the forced vibration of a point excited beam (based on the undamped
modes for free vibration) gives erroneous results in the region where the point force
is applied and should not be used for the analysis of dynamic stress at non-resonant
frequencies. Increasing the number of terms in the modal summation will not
overcome this problem since the normal modes used in the summation do not
include the evanescent waves that emanate from the point of excitation at
non-resonant frequencies.
Figure 3. Calculated spatial distributions of dynamic stress and predicted dynamic stress in a point
excited clamped beam for vibration at the non-resonant frequency, f"180 Hz (dB re 1 N/m2)
(== stress; ** predicted stress; } } } far"eld stress; - - - near"eld stress).
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4.1.2. E+ects of evanescent waves

The general e!ects of evanescent waves on the propagating wave components of
the beam response are to increase one of dynamic stress and velocity, and to
decrease the other. At the clamped boundaries in Figure 2 for instance, dynamic
stress is increased compared with far"eld dynamic stress, and velocity is decreased
compared with far"eld velocity levels; whilst further from the clamped boundaries
the dynamic stress is decreased and the velocity is increased. Similar e!ects are
observed in the excitation region for vibration at non-resonant frequencies (Figure
3). The opposite e!ects of evanescent waves on the propagating wave components
of dynamic stress and velocity are due to the opposite phase of evanescent waves in
the dynamic stress and velocity travelling wave solutions, given by equations (3)
and (1) respectively.

4.1.3. Predictions of dynamic stress based on far,eld relationships

Due to the opposite e!ects of evanescent waves on the dynamic stress and
velocity response, velocity predictions of dynamic stress based on the far"eld
relationships derived in Section 3 are only accurate in far"eld regions. As maximum
dynamic stress may occur in the near"eld, as was the case for the beam system
considered in this sub-section, far"eld relationships between dynamic stress and
velocity at the same position are inadequate for the prediction of maximum
dynamic stress in a structure. Maximum dynamic stress levels are required for
calculations of fatigue life.

4.1.4. Dynamic stress concentration

The increase in maximum dynamic stress at the clamped boundary (and at the
excitation position for non-resonant frequencies) above maximum far"eld dynamic
stress levels due to evanescent waves is referred to as dynamic stress concentration
[8]. Dynamic stress concentration is therefore the result of #exural near"elds and
leads to maximum dynamic stress at near"eld locations. Evanescent waves also
increase the spatial maximum of velocity above the spatial maximum far"eld
velocity, although the increase in maximum velocity is less than the increase in
maximum dynamic stress for this system.

4.1.5. ¸ocations of maximum response

Due to the opposite e!ects of evanescent waves on the dynamic stress and
velocity response, the positions of maximum dynamic stress and maximum velocity
occur at di!erent locations. For resonant vibration of the clamped beam, the
position of maximum dynamic stress is always at a clamped boundary, whereas
maximum velocity occurs at a di!erent location at each frequency.

4.1.6. Implications for strain gauge measurements

Dynamic stress decreases rapidly in magnitude with distance from the clamped
boundaries due to the presence of signi"cant evanescent waves, particularly at
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higher frequencies as wavelengths decrease. To accurately measure the maximum
dynamic stress at clamped boundaries, the strain gauges must be su$ciently short
and located as close as possible to the boundaries. This has signi"cant implications
for cycle counting predictions of fatigue in broad-band excited systems since the
dynamic strain is di$cult to measure right at the boundary of the system. As cycle
counting fatigue predictions are sensitive to the exact time history used, the use of
dynamic strain data from an o!set measurement position may yield inaccurate
results.

4.2. SIMPLY SUPPORTED BEAM WITH A CONCENTRATED MASS

Spatial distributions of dynamic stress and velocity are presented in this
sub-section for the #exural vibration of a simply supported beam with
a concentrated mass at its midspan. Fatigue failures commonly occur in systems
with large concentrated masses [3]. The system with a concentrated mass analyzed
here is shown schematically in Figure 4.

4.2.1. Spatial distributions

The spatial distributions of dynamic stress and velocity for vibration at the "rst,
third and ninth natural frequencies of the simply supported beam with the
concentrated mass are plotted in Figure 5. There are no evanescent waves
associated with the pinned boundaries of this system, but there are signi"cant
evanescent waves decaying from either side of the concentrated mass. These
evanescent waves are present in the system to satisfy a force discontinuity at the
centre of the beam which is due to the inertia of the concentrated mass.

4.2.2. Evanescent wave e+ects at the lowest natural frequency

At the "rst natural frequency of the system in Figure 4, the evanescent waves
associated with the concentrated mass are signi"cant over the whole beam. Their
e!ect is to increase dynamic stress compared with the far"eld dynamic stress at all
locations along the beam, and to decrease velocity compared with the far"eld
velocity at all locations along the beam. This is an unusual case since the maximum
velocity is signi"canatly less than the maximum far"eld velocity, whereas in other
systems considered [9] the maximum velocity is increased above the maximum
far"eld velocity in the presence of evanescent waves. The increase in maximum
dynamic stress above the maximum far"eld dynamic stress is the same as for other
systems.
Figure 4. Simply supported beam with a concentrated mass excited by a unit point force.



Figure 5. Calculated spatial distributions of dynamic stress and predicted dynamic stress in
a simply supported beam with a concentrated mass at x"0)45 m (dB re 1 N/m2) (== stress; **
predicted stress; } } } far"eld stress; - - - near"eld stress). (a) 1st Natural Frequency (5)5Hz). (b) 2nd
Natural Frequency (92)5 Hz). (c) 9th Natural Frequency (1022 Hz).
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4.2.3. Evanescent wave e+ects at higher natural frequencies

Evanescent waves for vibration at the odd natural frequencies above the "rst
natural frequency of this system have a di!erent e!ect than at the "rst natural
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frequency and produce near"eld e!ects similar to those observed in the previous
sub-section. In the region nearest the concentrated mass, dynamic stress levels are
increased above the propagating wave component of the response and velocity is
decreased below the propagating wave component of the response. Further from
the concentrated mass, dynamic stress is decreased and velocity is increased in
comparison with propagating wave component of the response. Outside the
near"eld region, both dynamic stress and velocity are equal to their respective
propagating wave components and dynamic stress can be predicted from velocity
using the far"eld correlation ratio. Spatial distributions to either side of the
concentrated mass are very similar to the spatial distributions in the region of
a clamped boundary (see section 4.1).

5. CORRELATION OF DYNAMIC STRESS AND VELOCITY SPATIAL MAXIMA

The spatial distributions presented in section 4 show that simple far"eld
relationship between dynamic stress and velocity at the same point can be used to
predict dynamic stress from velocity in far"eld regions, but that the same
relationships do not apply at a point in the near"eld. This is due to the opposite
e!ects of evanescent waves on the propagating wave components of dynamic stress
and velocity in near"eld regions. It was also observed that maximum dynamic
stress usually occurs in the near"eld due to dynamic stress concentration associated
with evanescent waves.

The far"eld relationships between dynamic stress and velocity that were derived
in section 3 can be extended to the prediction of maximum dynamic stress from
velocity. This is achieved by using equation (7) to relate the spatial maxima of the
propagating wave components of dynamic stress and velocity, and introducing
factors for the e!ects of evanescent waves on the spatial maxima of dynamic stress
and velocity. Thus, equation (7) is used to obtain a generalized relationship between
the spatial maxima of dynamic stress and velocity.

5.1. FACTORS FOR THE EFFECTS OF EVANESCENT WAVES

The general e!ects of evanescent waves are to increase maximum dynamic stress
and maximum velocity above maximum far"eld levels, but by di!erent amounts
and at di!erent locations. If p
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then equation (11) becomes
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The factor K@( f ) represents the increase or decrease in the far"eld correlation ratio
due to the e!ects of evanescent waves on the dynamic response. This factor also
represents the relative increase in maximum dynamic stress levels above maximum
far"eld levels compared with the increase in maximum velocity above maximum
far"eld levels.

5.2. GENERALIZED RELATIONSHIPS

The relationship in equation (13) states that the maximum dynamic stress in
a structure is related to the maximum velocity by the far"eld correlation ratio and
a frequency-dependent factor, K@ ( f ). De"ning
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the ratio of maximum dynamic stress to maximum velocity is re-expressed as
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where K( f ) is de"ned as the non-dimensional correlation ratio between dynamic
strain and velocity, EK( f )/c

L
is de"ned as the correlation ratio for dynamic stress,

and K ( f )/c
L

is de"ned as the correlation ratio for dynamic strain.

5.3. RELATIONSHIPS FOR THE PREDICTION OF MAXIMUM DYNAMIC STRESS

Practical relationships for autospectral, overall and time-domain predictions of
maximum dynamic stress are summarized in the following paragraphs.

5.3.1. Mean-square dynamic stress

The spatial maximum of mean-square dynamic stress is predicted from the
spatial maximum mean-square velocity using the relationship
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and spatial maximum mean-square dynamic strain is given by
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These relationships are derived directly from equation (15) for vibration at
frequency f. It should be noted that unlike equation (5) in section 2.2.2, these
relationships between dynamic stress and velocity are not directly applicable to the
time-domain analysis of dynamic stress.
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5.3.2. Overall mean-square dynamic stress

A conservative prediction of the maximum overall mean-square dynamic stress is
obtained by constructing a spectrum of maximum predicted mean-square dynamic
stress in each frequency band f

i
from equation (16), and then summing the

mean-square values in each frequency band:
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Equation (18) is exact is cases where the maximum dynamic stress in each frequency
band occurs at the same location for all frequencies f

i
. An example of a system with

maximum dynamic stress at the same location at virtually all frequencies is the
clamped beam system in section 4.1. For systems that do not have maximum
dynamic stress at the same location at all frequencies, this approach provides
a conservative upper-bound prediction of the maximum overall mean-square
dynamic stress.

5.3.3. Peak dynamic stress in the time-domain

The frequency-domain approach for predicting the maximum overall
mean-square dynamic stress which is based on narrow-band correlations between
dynamic stress and velocity cannot be used for time-history predictions of dynamic
strain. It may, however, be used to estimate peak dynamic stress in the time-domain
at the location of maximum overall dynamic stress. This involves the use of a crest
factor to relate the peak and root-mean-square levels of dynamic stress. The crest
factor is de"ned by

Crest Factor"
Peak ¸evel

Root-Mean-Square ¸evel
. (19)

Applying the de"nition of the crest factor in equation (19), the maximum peak
dynamic stress is calculated directly from the maximum overall mean-square
dynamic stress:

[p(t)]
max

"Crest Factor]Sp2
max

T1@2. (20)

The crest factor in equation (20) can be determined for the system being analyzed
by measuring the peak and root-mean-square velocities at a selected location, and
then calculating the crest factor according to equation (19).

5.4. CORRELATION RATIO CALCULATION PROCEDURES

Procedures for determining correlation ratios are outlined below.

5.4.1. Non-dimensional correlation ratio

The non-dimensional correlation ratio factor K( f ) in equation (15) is calculated
using either numerically or experimentally determined ratios of maximum dynamic
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stress to maximum velocity. If the spatial maxima of dynamic stress and velocity
are known for a given structure, then K( f ) is readily calculated from the de"nition
of the correlation ratio in equation (15):

K( f )"
c
L
E

p
max

( f )
l
max

( f )
"c

L

m
max

( f )
l
max

( f )
. (21)

Similarly, if p
max,pred

"El
max

/c
L

is the maximum predicted dynamic stress based
upon the far"eld correlation ratio, the non-dimensional correlation ratio K( f ) is
calculated from
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p
max

( f )
p
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( f )
"
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max

( f )
m
max,pred

( f )
. (22)

The correlation ratio is then calculated directly from K( f ) using the de"nition for
the correlation ratio given in section 5.2.

5.4.2. Correlation ratios for resonant vibration

The correlation ratio for mode n at the natural frequency f
n

is given by

EK( f
n
)

c
L

"

p
max,n

l
max,n

, (23)

where p
max,n

is the maximum dynamic stress of mode n and l
max,mn

is the maximum
velocity of mode n. Since the ratio of maximum dynamic stress to maximum
velocity in equation (23) is independent of the response amplitude, the spatial
maxima of dynamic stress and velocity obtained from a normal mode calculation
can be used to evaluate the correlation ratio. (In a normal mode calculation, p

max,n
and l

max,n
are for an arbitrary amplitude of vibration determined by a user-

selected normalization of the displacement vector.) Normal mode calculations are
readily implemented using a "nite element package with dynamic analysis
capabilities.

To perform these calculations only the structural details of the system being
analyzed are required. It is not necessary to know the type of excitation, its
spatial distribution, the amplitude of excitation, or the damping in the structure.
The availability of normal mode calculations for determining the correlation
ratio is very useful since the excitation and damping are usually not known or
are di$cult to describe. Resonant calculations of the correlation ratio will
usually be su$cient since most systems for which dynamic stress is of interest are
resonant.

5.4.3. Correlation ratios for non-resonant vibration

The far"eld relationship between the propagating wave components of dynamic
stress and velocity represents the underlying principle in the correlation of dynamic
stress and velocity spatial maxima. Since this relationship is independent of
whether the response is resonant or non-resonant, the correlation ratio should be
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similar at resonant and non-resonant frequencies. Hence there exists the possibility
of using resonant values of the correlation ratio at non-resonant frequencies. This is
exempli"ed by calculations of the non-dimensional correlation ratio K( f )
presented in the next section. Based on these results we may assume that the readily
determined correlation ratios for resonant vibration can be applied at
non-resonant frequencies to obtain predictions of maximum overall dynamic stress
in narrow-band and broad-band excited systems vibrating above their "rst natural
frequency. This involves using the larger of the resonant correlation ratios for the
natural frequencies bounding the frequency of interest as the correlation ratio for
vibration at that frequency.

5.5. BROAD-BAND CALCULATIONS OF THE NON-DIMENSIONAL CORRELATION RATIO

The non-dimensional correlation ratio K( f ) is plotted over a range of
frequencies in this section to demonstrate the boundedness of K ( f ) for resonant
and non-resonant frequencies, to assess the e!ects of a concentrated mass on K( f ),
and to show that correlations between dynamic stress and velocity are not
applicable below the "rst natural frequency.

5.5.1. Clamped beam

The non-dimensional correlation ratio K( f ) is plotted in Figure 6 for vibration
of the point-excited clamped beam in Figure 1 at a range of frequencies starting
below the "rst natural frequency. K( f ) is equal to 2)3 at the "rst natural frequency
and this is the upper-bound value of K( f ) for vibration at all frequencies above the
second natural frrequency. Between the "rst and second natural frequencies the
maximum value of K( f ) is 2)65, an increase of only 15 per cent above the upper
bound of 2)3 observed at higher frequencies. These results support the use of
correlations between the spatial maxima of dynamic stress and velocity at both
resonant and non-resonant frequencies, and the use of resonant correlation ratios
for generally conservative predictions at non-resonant frequencies. Predictions of
Figure 6. Calculated correlation ratio expressed as K ( f ) for a point-excited clamped beam.



Figure 7. Calculated correlation ratio expressed as K( f ) for a point-excited simply supported
beam with a 3)5 kg concentrated mass at x"0)45 m.
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dynamic stress at non-resonant frequencies above the "rst natural frequency
calculated using resonant correlation ratios are conservative by at most 20 per cent
for this system.

5.5.2. Clamped beam vibration below the ,rst natural frequency

For vibration at frequencies below the "rst natural frequency, K( f ) becomes
in"nitely large as frequency is decreased to zero since velocity tends to zero and
dynamic stress tends to a "nite, non-zero value. Correlation ratios are therefore of
limited practical use in the prediction of dynamic stress from velocity at frequencies
below the "rst natural frequency.

5.5.3. Systems with a concentrated mass

K( f ) is plotted in Figure 7 for a 0)9 m long simply supported beam with a 3)5 kg
concentrated mass at x"0)45 m. The value of K( f ) is large at low frequency but
decreases to a small bounded value at higher frequencies. Therefore, the same
correlations apply to a system with a concentrated mass except that a large value of
K( f ) must be used at low frequencies. The reasons for an increased value of K( f ) at
low frequency are described in section 4.2.

5.6. PROPERTIES OF THE CORRELATION RATIO BETWEEN DYNAMIC STRESS AND VELOCITY

The correlation ratio between the spatial maxima of dynamic stress and velocity
has a number of useful properties that make it of practical interest for the prediction
of maximum dynamic stress from velocity. The main properties of the correlation
ratio are that (i) it is largely frequency independent, (ii) it lies in a small range, and
(iii) it is largely independent of structural details such as boundary conditions,
geometry and dimensions. Furthermore, the same relationships are applicable to
vibration at both resonant and non-resonant frequencies. These properties of the
correlation ratio arise primarily from the fundamental relationship between the
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propagating wave components of dynamic stress and velocity in equation (5), and
the limited e!ect of evanescent waves on the magnitudes of the spatial maxima of
dynamic stress and velocity (section 4). The main limitations with use of
correlations between the spatial maxima of dynamic stress and velocity are that
they are not applicable to vibration below the "rst natural frequency of a system,
and special attention must be given to the e!ects of concentrated masses at the
lowest natural frequencies of a system.

Other features of using correlations between dynamic stress and velocity are that
(i) correlation ratios for resonant vibration are easily calculated using a normal
mode model; (ii) resonant correlation ratios may be used at non-resonant
frequencies for generally conservative predictions of maximum dynamic stress;
(iii) approximate values of the correlation ratio may be assumed in most cases
without recourse to calculations; (iv) the vibrational velocity data required for
predictions is easily measured; and (v) post-processing of the measured vibrational
velocity data for the prediction of maximum mean-square or peak dynamic stress is
straightforward and may be performed directly within modern digital signal
analyzers without the need for complicated computer processing.

6. EXPERIMENTS

Broad-band measurements of dynamic strain and velocity taken from some
point-excited beam systems with classical boundary conditions are used in this
section to demonstrate (i) far"eld correlations between dynamic strain and velocity;
(ii) the e!ects of evanescent waves on far"eld correlations in near"eld regions; (iii)
narrow-band spatial distributions of dynamic strain and predicted dynamic strain;
(iv) spectral predictions of maximum dynamic strain obtained using spatially
distributed measurements of velocity; and (v) crest factors for dynamic strain and
velocity. The structures considered are a clamped beam, a simply supported beam,
and a simply supported beam with a point constraint.

6.1. EXPERIMENTAL ARRANGEMENTS

The experiments were performed using a 0)9 m long, 0)04 m wide and 0)005 m
thick steel beam with 13 semi-conductor foil strain gauges bonded along one-half of
the beam on one side only. Since the device that was used to clamp the beam was
0)04 m long, the length of the beam when clamped was reduced to 0)82 m. The
locations of the strain gauges for the di!erent beam arrangements are listed in
Table 1, and the experimental beam arrangements are drawn in Figure 8. The
experimental results presented in this section are mainly for the clamped beam
system.

The beam systems were excited using a Bruel and Kjaer (B&K)-Type 4809
vibration exciter powered by a B&K-Type 2706 power ampli"er. Strain-gauge
measurements were performed with Kulite semi-conductor strain gauges, Type
S/ACP-120-300, which are considerably more sensitive than standard foil gauges
and do not need to be operated in a bridge arrangement. The strain gauges were



TABLE 1

Strain gauge labels and strain gauge positions for each of the beam arrangements

Gauge Simply supported (m) Clamped (m)

0 0)047 0)007
1 0)065 0)025
2 0)1 0)06
3 0)135 0)095
4 0)17 0)13
5 0)205 0)165
6 0)24 0)2
7 0)275 0)235
8 0)31 0)27
9 0)345 0)305

10 0)38 0)34
11 0)415 0)375
12 0)45 0)41
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powered with a constant current of 20 mA and had a calibration factor of 2400 V
per unit strain (using a "xed gain of 10). Light-weight B&K-Type 4375 charge
accelerometers were used with a B&K-Type 2636 charge ampli"er for vibrational
velocity measurements and either another accelerometer or a B&K-Type 8001
impedance head (positioned between the structure and the exciter) was used as the
reference when measuring spatial distributions. Vibration data were collected using
a Dual-Channel B&K-Type 2133 real-time frequency analyzer. This analyzer was
used to obtain both one-twelth octave spectral measurements and digitized
time-history measurements. The measured data were subsequently transferred to
a personal computer (PC) for post-processing. The calibration of the velocity
measurement system was tested using a B&K-Type 4291 calibrator.

6.2. NARROW-BAND SPATIAL DISTRIBUTIONS

Narrow-band spatial distributions of measured dynamic strain and predicted
dynamic strain (predicted from measured velocity) for the "rst half of the clamped
beam in Figure 8(b) are plotted in Figure 9 for the "rst and fourth resonant
frequencies. The beam was excited by a point force at x"0)635 m using a white
noise excitation signal. The experimental results in Figure 9 agree with the
theoretical spatial distributions presented in section 4.1. These results show that
(i) dynamic strain and velocity are simply related in the far"eld away from the
clamped boundaries; (ii) dynamic strain and velocity are not correlated in the
near"eld region associated with a clamped boundary; (iii) far"eld conditions do not
occur at the lowest resonant frequency: (iv) the "rst velocity minimum away from
a clamped boundary provides a useful demarcation between the near"eld and the
far"eld; and (v) that the spatial maxima of dynamic strain and velocity are increased



Figure 8. Experimental beam arrangements. (a) Strain-gauged beam. (b) Clamped beam. (c) Simply
supported beam. (d) Simply supported beam with a point constraint.
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above maixmum far"eld levels due to evanescent wave e!ects, but by di!erent
amounts and at di!erent locations. Maximum dynamic strain occurs at the
clamped boundary and the increase in dynamic strain at this location in
comparison with maximum far"eld levels is referred to as dynamic strain
concentration.

Spatial distributions at a resonant and a non-resonant frequency of the simply
supported beam in Figure 8(c) are plotted in Figure 10. At resonance there are no
evanescent waves associated with either the pinned boundaries or the point of
excitation and the measurements of dynamic strain and velocity are related by the



Figure 9. Measured and predicted dynamic strain spatial distributions of the clamped beam excited
at x"0)635 m by white noise (1/12-octave bands). (*j= measured; *h* predicted). (a) 1st
resonant frequency (39 Hz). (b) 4th resonant frequency (325 Hz).
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far"eld correlation ratio at all positions along the beam. However, at the slightly
higher non-resonant frequency in Figure 10(b), there are evanescent waves
emanating from the point of excitation which a!ect the correlation of dynamic
strain and velocity in the region of the point force applied at x"0)45 m.

6.3. FARFIELD PREDICTIONS

Frequency-domain and time-domain predictions of dynamic strain based on the
use of far"eld relationships from section 2.3 are presented in Figure 11 for the
position x"0)34 m of the clamped beam system in Figure 8(b). The selected
position lies in the far"eld at all frequencies above the second resonant frequency of
the clamped beam. The beam was excited with white noise using a point force
applied at x"0)635 m. There is very good agreement between the measured and
predicted dynamic strain autospectra at frequencies above the second resonant



Figure 10. Measured and predicted dynamic strain spatial distributions of simply supported beam
excited at x"0)45 m by white noise (1/12-octave bands). (*j*measured; h* predicted). (a) 4th
resonant frequency (688 Hz). (b) Non-resonant frequency between the 4th and 5th resonant
frequencies (818 Hz).
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frequency. At the second resonant frequency and below, the measured dynamic
strain is overpredicted due to evanescent wave e!ects. There is also good agreement
between the measured and predicted dynamic strain time histories except for some
overprediction of dynamic strain level due to low-frequency evanescent wave
e!ects.

Processing procedures: The frequency-domain predictions of dynamic strain
were obtained by scaling the measured velocity autospectrum by the far"eld
correlation ratio for dynamic strain according to equation (8). The predicted
dynamic strain time histories were obtained from measured velocity time histories
by performing a phase shift of 903 in the frequency-domain (by using Fourier
transforms and convolution) and scaling the velocity time history by the far"eld
correlation ratio for dynamic strain [see equation (10)]. A phase shift was necessary
to account for the phase shift between the propagating wave components of
dynamic strain and velocity.



Figure 11. Measured and predicted dynamic strain at x"0)34 m of the clamped beam excited by
white noise. (** Measured; - - - - predicted). (a) Frequency-domain prediction. (b) Time-domain
prediction.
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6.4. NEARFIELD PREDICTIONS

Frequency-domain and time-domain predictions of dynamic strain are presented
in Figure 12 for a location which lies in the near"eld of the clamped beam system in
Figure 8(b) at frequencies up to 1 kHz. In Figure 12(a), dynamic strain is observed
to be underpredicted at frequencies below 200 Hz, overpredicted at frequencies
between 200 Hz and 1 kHz, and accurately predicted at frequencies above 1 kHz.
Since the uncorrelated low-frequency components are signi"cant to the beam
response, they have a signi"cant adverse e!ect on the time}domain correlation of
dynamic strain and velocity at all points in time.

The frequency-domain predictions vary from under-predicting to over-
predicting due to the opposite e!ects of evanescent waves on dynamic strain and
velocity, and the changing location of the measurement position with frequency
relative to the spatial distributions of dynamic strain and velocity (due to
decreasing wavelength). As a result of evanescent wave e!ects on dynamic strain
and velocity, dynamic strain cannot be predicted from the velocity measured at the
same location if near"eld conditions exist.



Figure 12. Measured and predicted dynamic strain at x"0)06 m of the clamped beam excited by
white noise. (** Measured; - - - - predicted). (a) Frequency-domain prediction. (b) Time-domain
prediction.
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6.5. SPECTRAL PREDICTIONS OF MAXIMUM DYNAMIC STRAIN

In order to predict maximum overall dynamic strain in broad-band excited
systems, it was proposed in section 5 that correlations between the spatial maxima
of dynamic strain and velocity be used in place of relationships between dynamic
strain and velocity at the same location. This was necessitated by evanescent wave
e!ects which prevent the correlation of dynamic strain and velocity at a point in the
near"eld. The procedure is to construct a spectrum of the spatial maximum velocity
in each frequency band for the whole beam and scale this spectrum by the far"eld
correlation ratio for dynamic strain. A factor is then added to take into account
evanescent wave e!ects.

6.5.1. Clamped beam system

The autospectrum of predicted maximum dynamic strain for the clamped beam
system is compared in Figure 13 with the measured autospectrum at the position of
maximum overall dynamic strain. A factor of 1 dB was used to take into account



Figure 13. Measured and predicted dynamic strain of a clamped beam excited by white noise.
Predicted using the sqatial maximum velocity in each frequency band, the far"eld correlation ratio
and a correction factor of 1 dB. (** Measured; - - - - predicted).
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evanescent wave e!ects. The predicted spectrum accurately predicts the measured
dynamic strain at frequencies up to 1 kHz and overpredicts at frequencies above
1 kHz Dynamic strain is overpredicted at high frequencies since the strain gauge
was not located close enough to the clamped boundary for measurement of the
maximum dynamic strain associated with short-wavelength, high-frequency
components. These high-frequency errors demonstrate a general di$culty with
measuring maximum dynamic strain at high frequencies with "nite-length strain
gauges.

6.5.2. Simply supported beam system

The same procedure was also applied to the prediction of maximum dynamic
strain in a broad-band excited simply supported beam, except that no factor was
added for evanescent wave e!ects since there is no dynamic strain concentration for
vibration of this system at resonance. The measured and predicted dynamic strain
autospectra are plotted in Figure 14. At resonance there is good agreement between
the measured and predicted dynamic strain autospectra, but at non-resonant
frequencies the predicted dynamic strain varies between under-predicting and
over-predicting due to near"eld e!ects associated with the exciting force.

6.5.3. Simply supported beam with a point constraint

Predictions of overall dynamic strain are presented in Table 2 for a simply
supported beam excited by white noise with a point constraint at x"0)185 m.
Since this system consists of two sub-systems, it can be analyzed as either a single
system or two sub-systems. Results for the predicted dynamic strain using both
approaches are presented in Table 2. These predictions are compared with (i) the
maximum measured overall dynamic strain and (ii) the maximum measured overall
dynamic strain calculated from an autospectrum constructed of the measured
spatial maximum dynamic strain in each frequency band. Autospectral predictions



Figure 14. Measured and predicted dynamic strain at the location of maximum overall strain for
a simply supported beam excited by white noise. (** measured at x"0)45 m; - - - - predicted
maximum dynamic strain in each frequency band).

TABLE 2

Measured and predicted overall dynamic strain

Short sub-system Long sub-system Whole beam
(dB) (dB) (dB)

Measured 62)6 65)0 65)0
Measured, spatial maximum
each frequency 64)1 66)5 66)9
Predicted, spatial maximum
each frequency 61)8 66)9 67)4
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using the single-system approach are presented in Figures 15 and 16 for the
sub-system approach (short section only).

Predictions based on the analysis of the beam as a single system provide
conservative predictions, whereas the use of a sub-system approach in the case of
the short sub-system leads to non-conservative predictions. The sub-system
approach is non-conservative due to a retarded velocity response at low frequencies
(Figure 16). Therefore, the sub-system approach should not be used if
low-frequency components are signi"cant. At high frequencies either approach may
be used.

6.6. CREST FACTORS FOR THE PREDICTION OF MAXIMUM PEAK DYNAMIC STRAIN

Due to the near"eld e!ects discussed previously, spectral methods must be used
for the prediction of maximum overall dynamic strain when using strain-velocity
correlation. The use of a crest factor permits these predictions of maximum overall



Figure 15. Measured and predicted dynamic strain spatial maxima in each frequency band of the
simply supported beam constrained at x"0)185 m and excited at x"0)775 m by white noise.
(*measured; } } } predicted).

Figure 16. Measured and predicted dynamic strain spatial maxima in each frequency band for the
short section of the simply supported beam constrained at x"0)185 m and excited at x"0)775 m by
white noise. (*measured; } } } predicted).
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dynamic strain to be used for the prediction of the maximum peak dynamic strain
in the time-domain (see section 5.3.3). Crest factors are given in Table 3 for
excitation of the clamped beam system in Figure 8(b) by white noise. These crest
factors were calculated from measurements of (i) dynamic strain and velocity at the
same position in the far"eld; (ii) dynamic strain in the near"eld and velocity in
the far"eld; and (iii) the excitation force signal. The ratio of the peak value to the
root-mean-square value ranges from 4)0 to 4)5, and is similar for dynamic strain,
velocity and excitation force.

7. SUMMARY AND CONCLUSIONS

The spatial distributions of dynamic strain and velocity in randomly excited
beams have been reported on in this paper. Relationships between dynamic strain



TABLE 3

Crest factors for whie-noise excitation of a clamped beam

Measurement r.m.s. Peak Ratio of peak Ratio of peak
to r.m.s. to (J2* r.m.s.)

Strain x"0)34 m 3)9 l 17)7 l 4)5 3)2
Velocity, x"0)34 m 13)2 mm/s 55)1 mm/s 4)2 2)9
Strain, x"0)007 m 7)2 l 27)0 l 4)3 3)0
Velocity, x"0)34 m 13)2 mm/s 55)1 mm/s 4)2 2)9
Excitation force 6)16 N 24)7 N 4)0 2)8
Strain, x"0)007 m 7)2 l 27)1 l 4)3 3)0
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and velocity were also investigated. The speci"c results of this work are
summarized as follows:

1. Hunt [1] and Ungar [2] have shown that the propagating wave components of
dynamic bending strain and velocity at the same spatial position are related by
m
FF

/l
FF
"y

m
k2
B
/u for the transverse vibration of beams. The ratio of dynamic

bending strain to velocity in far"eld regions is de"ned as the far"eld correlation
ratio. The far"eld correlation ratio for #exural vibration of a beam is frequency
independent and is a function of only the non-dimensional shape factor.

2. Simple far"eld relationships between dynamic strain and velocity at the same
spatial position cannot be used to predict dynamic strain from velocity in the
near"eld regions of beams, due to the opposite e!ects of evanescent waves on
the propagating wave components of dynamic strain and velocity. These
opposite e!ects result from the opposite phase of evanescent waves in the
travelling wave solutions for dynamic strain and velocity.

3. Evanescent waves increase the spatial maximum levels of dynamic strain and
velocity above the spatial maximum levels of the propagating wave
components of the response. Due to evanescent wave e!ects, the propagating
wave components of dynamic strain and velocity are increased by di!erent
amounts and at di!erent locations.

4. In the case of low-frequency non-resonant vibration below the "rst resonant
frequency of a structure, or low-frequency resonant vibration of a structure
with a concentrated mass, evanescent waves increase dynamic strain but
decrease velocity in comparison with the propagating wave components of the
response.

5. Increased dynamic strain due to evanescent wave e!ects is de"ned as dynamic
strain concentration. Dynamic strain concentration occurs in boundary
regions and near discontinuities. Dynamic strain concentration is di!erent to,
and considered to be independent of, additional geometric stress concenration
e!ects.

6. The spatial extent of dynamic strain concentration decreases as the
wavenumber of evanescent waves increases. This results in short regions of
high dynamic strain which are di$cult to measure using strain gauges.
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7. Relationships for the prediction of dynamic strain from velocity are based on
the correlation of dynamic strain and velocity spatial maxima in narrow
frequency bands. Formal relationships are de"ned by using the spatial maxima
of the propagating wave components of the response in the far"eld relationship
between dynamic strain and velocity, and by incorporating factors for the
e!ects of evanescent waves on the spatial maxima of the propagating wave
components of dynamic strain and velocity.

8. The use of spatial maxima for dynamic strain and velocity in narrow frequency
bands for the prediction of dynamic strain takes into account (i) the di!erent
locations of maximum dynamic strain and maximum velocity due to
evanescent wave e!ects; and (ii) variations in the positions of maximum
dynamic strain and maximum velocity with frequency.

9. The ratio of maximum dynamic bending strain to maximum velocity is de"ned
as the correlation ratio. The correlation ratio can be de"ned theoretically or
experimentally. The correlation ratio is based with a spatially distributed set of
narrow-band velocity measurements to obtain conservative predictions of
spatial maximum dynamic bending strain in randomly vibrating structures.

10. The correlation of dynamic strain and velocity spatial maxima applies at both
constant and non-resonant frequencies, since far"eld relationships between
dynamic strain and velocity are independent of resonance, and the e!ects of
evanescent waves are both bounded and lie in a small range.

11. The correlation of dynamic strain and velocity spatial maxima applies to both
narrow-band and broad-band excited structures, since the relationships and
procedures for the prediction of dynamic strain from velocity using
strain}velocity correlation are applicable to vibration at any frequency and
over any frequency range (at or above the "rst resonant frequency).

The experimental data presented in this paper demonstrate relationships between
dynamic strain and velocity and the e!ects of evanescent waves on the propagating
wave components of dynamic strain and velocity. The results of the experimental
work support the theoretical results presented. The most important conclusions of
this paper are that (i) there exists largely frequency-independent correlations
between dynamic strain and velocity which have a "rm theoretical basis; (ii) spatial
maximum levels of dynamic strain can be predicted from simple measurements of
vibrational velocity; (iii) the relationships apply equally to narrow-band and
broad-band vibration; (iv) numerical methods such as the "nite-element method
can be used to calculate the correlation ratio between dynamic stress and velocity
for the prediction of maximum dynamic stress or strain.
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